朱超琼,女,1995年5月生,浙江诸暨人,中共党员,清华大学工学博士,导师为王晓慧教授。2022年7月入职中国矿业大学材料与物理学院,特聘副研究员,硕士生导师。入选2023年江苏省“双创博士”。研究方向为能量存储和转换材料,包括储能陶瓷电介质材料及器件,高容、宽温度稳定型陶瓷介质材料与器件,多层陶瓷电容器关键制备工艺研发等。主持国家自然科学基金青年项目、中国博士后基金特别资助(站前)项目、江苏省自然科学基金青年科学基金项目等项目,已在国内外高水平期刊上发表论文40余篇,申请专利6项,撰写英文专著章节《Ceramic Dielectrics for MLCC》。
教育/工作经历:
2022.07至今 中国矿业大学材料与物理学院,特聘副研究员
2017.09~2022.06 清华大学材料学院,工学博士
2014.09~2017.06 清华大学经管学院,经济学学士(第二学位)
2013.09~2017.06 清华大学材料学院,工学学士
联系方式:
邮箱:zhucq@cumt.edu.cn
地址:江苏省徐州市大学路1号中国矿业大学材料与物理学院
科研兴趣:
1. 新型功能陶瓷材料:
(1)超宽温度稳定型陶瓷材料;
(2)高熵储能陶瓷材料;
(3)晶粒级配陶瓷材料;
(3)复合陶瓷电介质材料;
2. 多层陶瓷电容器关键制备工艺及可靠性提升设计
3. 陶瓷烧结新工艺及机理研究:两段式烧结、冷烧结、超快速烧结
4. 材料模拟仿真设计:有限元、相场模拟
科研项目:
1. 国家自然科学基金青年项目,52402163,2025.1~2027.12,在研,主持
2. 江苏省自然科学基金青年科学基金项目,2024.7~2027.6,在研,主持
3. 中国博士后基金特别资助(站前)项目,2023TQ0372,2023.7~2025.2,在研,主持
4. 清华大学新型陶瓷与精细工艺国家重点实验室开放课题,KF202204,2022.9~2024.8,结题,主持
5. 中央高校基本科研业务费科技项目,2023QN1034, 2023.1~2024.12,在研,主持
6. 横向课题,多层陶瓷电容器FIB加工制样与微结构分析,2023.6~2023.12,20万元,结题,主持
7. 横向课题,陶瓷材料损伤数据集构建、分析与三维可视化重建, 2023.6~2023.12 ,结题,主持
8. 中国矿业大学科研启动经费
9. 中国矿业大学材料与物理学院材料科学与工程学科引导课题,2023.11~2026.10,在研,主持
10. 国家重点研发计划政府间国际科技创新合作专项,2024YFE0101500,在研,参与
论文发表:
[1]Zhu C Q, Cai Z M, Cao X H, Fu Z X, Li L T, Wang X H. High-dielectric-constant nanograin BaTiO3-based ceramics for ultra-thin layer multilayer ceramic capacitors via grain grading engineering. Adv. Powder Mater., 2022,1:100029.
[2] Zhu C Q, Cai Z M, Feng P Z, Zhang W C, Hui K Z, Cao X H, Fu Z X, Wang X H. Reliability mechanisms of the ultrathin-layered BaTiO3-based BME MLCC. ACTA PHYS-CHIM SIN, 2024, 40(1): 2304015.
[3] Zhu C Q, Cai Z M, Luo B C, Guo L M, Li L T, Wang X H. High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties. J. Mater. Chem. A, 2020, 8:683-692.
[4]Zhu C Q, Cai Z M, Luo B C, Cheng X, Guo L M, Jiang Y, Cao X H, Fu Z X, Li L T, Wang X H. Multiphase engineered BNT-based ceramics with simultaneous high polarization and superior breakdown strength for energy storage applications. ACS Appl. Mater. Interfaces, 2021, 13:28484-28492.
[5]Zhu C Q, Cai Z M, Guo L M, Jiang Y, Li L T, Wang X H. Simultaneously achieved ultrastable dielectric and energy storage properties in lead-free Bi0.5Na0.5TiO3-based ceramics. ACS Appl. Energy Mater., 2022, 5:1560-1570.
[6]Zhu C Q, Cai Z M, Guo L M, Li L T, Wang X H. Grain size engineered high-performance nanograined BaTiO3-based ceramics: Experimental and numerical prediction. J. Am. Ceram. Soc., 2021, 104:273-283.
[7]Zhu C Q, Wang X H, Zhao Q C, Cai Z M, Cen Z Y, Li L T. Effects of grain size and temperature on the energy storage and dielectric tunability of non-reducible BaTiO3-based ceramics. J. Eur. Ceram. Soc., 2019, 39:1142-1148.
[8]Zhu C Q, Zhao Q C, Cai Z M, Guo L M, Li L T, Wang X H. High reliable non-reducible ultra-fine BaTiO3-based ceramics fabricated via solid-state method. J. Alloys Compd., 2020, 829:154496.
[9]Zhu C Q, Cai Z M, Li L T, Wang X H. High energy density, high efficiency and excellent temperature stability of lead free Mn–doped BaTiO3–Bi(Mg1/2Zr1/2)O3 ceramics sintered in a reducing atmosphere. J. Alloys Compd., 2020, 816:152498.
[10] Cai Z M, Zhu C Q*, Li S H, Yang H, Li A Y, Tian Z B, Feng P Z. Transformation Toughening in Solid Dielectrics. ACS Appl. Electr. Mater. 2023, 5(2): 1206-1211.